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Abstract: Detection of endolymphatic hydrops is important for diagnosing Meniere’s 

disease, and can be performed non-invasively using optical coherence tomography (OCT) in 

animal models as well as potentially in the clinic. Here, we developed ELHnet, a 

convolutional neural network to classify endolymphatic hydrops in a mouse model using 

learned features from OCT images of mice cochleae. We trained ELHnet on 2159 training 

and validation images from 17 mice, using only the image pixels and observer-determined 

labels of endolymphatic hydrops as the inputs. We tested ELHnet on 37 images from 37 mice 

that were previously not used, and found that the neural network correctly classified 34 of the 

37 mice. This demonstrates an improvement in performance from previous work on 

computer-aided classification of endolymphatic hydrops. To the best of our knowledge, this is 

the first deep CNN designed for endolymphatic hydrops classification. 

© 2017 Optical Society of America 

OCIS codes: (100.4996) Pattern recognition, neural networks; (170.0170) Medical optics and biotechnology; 

(170.4500) Optical coherence tomography. 
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1. Introduction 

Deep learning methods, driven by large data sets and powerful and sometimes cloud-based 

computational hardware [1], are transforming computer-aided diagnostics in medicine. Deep 

learning has been applied to study diseases in the brain [2], skull [3], skin [4], lungs [5], blood 

vessels [6,7], and eye [8]. Convolutional neural networks have achieved state-of-the-art 

results on a variety of computer vision tasks and have created new opportunities for applying 

machine learning to interpret medical image data. The demonstration that convolutional 

neural networks can classify dermatoscopy images of skin cancer lesions at the level of 

trained dermatologists [4] is an example of such an application. As new modes of medical 

imaging become available, it will be important to explore the integration of convolutional 

neural networks with imaging systems to improve detection of disease. 

Convolutional neural networks (CNNs) are a class of deep learning models specialized for 

computer vision. CNNs are typically made up of many convolution, pooling, and fully-

connected layers. A convolution layer convolves the output from the previous layer with a set 

of learnable filters and then applies an element-wise non-linear activation function, typically 

ReLU(x) = max(0, x) where ReLU stands for Rectified Linear Units. The key property of the 

convolution layer is that it encodes local connectivity (because the filter size is small) and 

weight sharing (we use the same filter and hence the same weights at each position in the 

image), modeling assumptions which are well-suited to images. The convolution layer can 

thus be interpreted as a set of local feature detectors sliding throughout the image. The 

pooling layer downsamples along the spatial dimensions by partitioning the output of the 

previous layer into non-overlapping regions and pooling the values in each region into one 

output (typically by taking the maximum), thereby locally aggregating information. A stack 

of convolution and pooling layers allows the network to learn a hierarchy of representations, 

high-level features from low-level pixels. The fully-connected layers at the end of the 

network allow us to aggregate all the information that we've learned at the different spatial 

positions into one final prediction. 

In the field of computer vision, convolutional neural networks (CNNs) have achieved 

state of the art results on many challenging vision tasks related to analyzing and 

understanding images. Since Krizhevsky et al [9] achieved ground-breaking results on image 

classification by using CNNs (achieving an error rate of 16.4% compared to the second-place 

error rate of 26.2% in the 2012 ImageNet competition), CNNs have set new benchmarks in 

many other computer vision tasks, such as object detection [10], semantic segmentation, 

image captioning, and image generation. More recently, state of the art computer vision 

performance has been achieved through more efficient and deeper CNN architectures, as 

exemplified by Inception [11] and residual networks [12], winners in the 2014 and 2015 

ImageNet competitions, respectively. In the case of image classification, one key feature of 

CNNs is that they can be fully trained in an end-to-end manner, learning the mapping directly 

from the pixels in the input image to the target output (class labels) from our training data. 
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Hence, CNNs do not require any kind of hand-crafted rules or feature engineering based on 

domain expertise. These attributes make CNNs particularly apropos for medical imaging 

applications. 

Optical coherence tomography (OCT) is becoming more widely used to study the auditory 

portion of the inner ear, the cochlea (Fig. 1), in animal models [13–18]. One goal is to use 

OCT for non-invasive, direct detection of structural changes in the cochlea that are associated 

with hearing loss. For example, Meniere’s disease is a syndrome of episodic vertigo, 

fluctuating hearing loss, roaring tinnitus, and aural pressure, that is associated with a specific 

histological finding called endolymphatic hydrops [19]. Endolymphatic hydrops is the excess 

accumulation of endolymph fluid within the scala media, a compartment inside the cochlea 

(Fig. 1(b), 1(c)). While the etiology of endolymphatic hydrops remains poorly understood 

[20], it can be detected in vivo using OCT [21] (Fig. 1(b)) or MRI [22,23], or post-mortem 

using fixed, sectioned tissue (Fig. 1(c)) [24]. Typically, these imaging techniques provide a 

cross-section of one or more of the cochlear turns. Subjectively, a cochlear histopathologist 

can assess the presence of endolymphatic hydrops with relative ease by examining the 

distension of Reissner’s membrane [24], the membrane that separates the scala media from 

the scala vestibuli. 

 

Fig. 1. (a) Schematic of the cochlea. (b) Representative OCT cross-sections of the cochlea in a 

healthy mouse (normal) and a blast-exposed mouse with endolymphatic hydrops (hydrops). 

The red arrow indicates the deformity of Reissner’s membrane, the hallmark of endolymphatic 

hydrops, in the blast-exposed mouse. Scale bars 100 µm. (c) Plastic-embedded section of the 

upper basal turn in the cochlea of a mouse (adapted from [25]). Scale bar 50 µm. RM, 

Reissner’s membrane; SM, scala media; SV, scala vestibuli. 

Objectively, however, establishing the presence or absence of endolymphatic hydrops is 

not straightforward. A common approach is to measure features based on expert 

understanding of the disease, such as the deformation of Reissner’s membrane [26], the ratio 

of the area of the scala media to the area of the scala vestibuli [27], and the endolymph 

volume [20]. An obvious drawback of using expert derived features is that our understanding 

of the pathology may be incomplete, hence many important features could be omitted by the 

human designers. Likewise, even well-chosen expert derived features may not span the entire 

feature space that describes the pathology. Developing software to automatically measure 

human-designed features is also challenging [28]. A significant fraction of images may be 

effectively un-analyzable by computer-based methods for human-designed feature extraction, 

as demonstrated by a recent computer-aided approach to detect endolymphatic hydrops using 

a measure of Reissner’s membrane distension [29]. 

Here we report an automated approach that uses a CNN architecture, called ELHnet 

(which stands for EndoLymphatic Hydrops network), to overcome these limitations. We 

developed ELHnet specifically to classify endolymphatic hydrops in mice undergoing 

cochlear imaging using OCT. We show that this technique provides accurate and reliable 

classification of endolymphatic hydrops non-invasively, and has a much higher success rate 

for analyzing images compared with previous approaches. Thus, this work provides another 

example where using state-of-the-art convolutional neural networks can provide medical 

diagnostic capabilities without a priori knowledge of the disease changes, and contributes to 

the growing literature on the application of CNNs to medical OCT images [30–32]. 
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2. Methods 

2.1 Data set 

We constructed a data set of 2196 cross-sectional OCT images of cochleae from 54 mice 

(Table 1). These images were obtained in live, anesthetized mice during biological 

experiments [15,33]. Briefly, mice were anesthetized with ketamine/xylazine, fixed to a head 

post, and underwent surgery to open the left middle ear bulla. We then imaged the cochlea 

using OCT without violating the otic capsule bone. Our 1300 nm swept-source imaging setup 

has been fully described previously [15]. In order to induce endolymphatic hydrops in mice, 

nine mice were exposed to a single blast pressure wave with peak pressure of 130 kPa [25] 

and eighteen mice were exposed to band-passed white noise (8-16 kHz) at 100 dB sound 

pressure level (SPL) for two hours [21] (a full manuscript detailing the biological features of 

this phenomenon is currently in preparation). The remaining 27 mice served as normal 

controls because they received no blast exposure and so did not have endolymphatic hydrops. 

All protocols were approved by the Institutional Animal Care and Use Committee at Stanford 

University. Ground truth labels of endolymphatic hydrops were determined visually by a 

trained observer (J.K.) without blinding during image acquisition, and later reviewed by a 

second observer (G.S.L.) during image preparation. If the observers reached different 

determinations of endolymphatic hydrops, then the image was excluded. When multiple 

cross-sectional images were obtained in the same cochlea, the entire set of cross-sections 

were viewed together to determine the ground truth label of the cochlea and its cross-sections. 

Table 1. Number of mice and images in the training, validation, and test data sets. 

 Training  Validation  Test 

Class Mice Images  Mice Images  Mice Images 

Control 6 1015 (60900)  2 260 (2600)  19 19 

Hydrops 7 761 (57836)  2 123 (1230)  18 18 

The numbers of computationally-augmented images in the training and validation data sets are indicated in 

parentheses. 

In 17 mice, cochleae were imaged from multiple angles, positions, and depths to capture 

hundreds of cross-sectional images per cochlea. The remaining 37 mice used in the test group 

had their cochleae imaged only once. The optical resolution of the imaging system was 9.8 

µm lateral and 15 µm axial measured in air [15]. We collected images using sampling of 7.5 

µm laterally. Bilinear interpolation was used in the axial direction to interpolate from 15 µm 

to 7.5 µm. Images were cropped to 128 x 128 pixel regions focused on the apical turn of the 

cochlea where the endolymphatic space is visible. 

The data set is split into three subsets: training, validation, and test subsets (Table 1). The 

training subset contains 1776 images from 13 mice, and was used to train several candidate 

convolutional neural network models (i.e. fit the model weights using back-propagation) with 

different model architectures and hyper-parameters. The validation subset contains 383 

images from 4 mice, and was used to choose the trained CNN model that generalized best to 

held-out data, thereby avoiding overfitting of the model to the training data. The test subset 

contains 37 images from 37 mice, and was used in the final evaluation of the best CNN model 

to assess its generalization error for new data (i.e. data not previously used in training and 

validating the model). 

2.2 Data augmentation 

Training CNN architectures requires substantial computational power and large amounts of 

labeled data. Labeled data is particularly difficult to obtain in medical research due to 

regulatory restrictions and cost of acquiring images. For this work, labeled data was limited 

because OCT imaging of the cochlea is a relatively new technique and our experiments 

required the use of live mice. Our data set size was small—2196 labeled images, compared 
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with 14,197,122 labeled images in ImageNet used for the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) [34]. 

To overcome this challenge, we computationally augmented the number of images in our 

training and validation data sets using classification-invariant transformations, such as 

rotation, translation, and zooming. Data augmentation was performed on training and 

validation images to simulate the effects of natural perturbations in the image acquisition 

process. We generated augmented images by rotating the original 128x128 pixel image by a 

randomly chosen angle between 20 and 20 degrees, shrinking the image by a randomly 

chosen factor between 1 and 1.33, and cropping a randomly chosen 64x64 pixel patch within 

the central 96x96 pixel region of the image (Fig. 2). The purpose of cropping from a 

randomly chosen center was to simulate image translation. Though cropping necessitates loss 

of image information that may be relevant for classification of endolymphatic hydrops, we 

believe this to be unlikely given that the loss of information mainly involves the periphery of 

pre-augmented images. Constraining the cropping to the central 96x96 pixel region ensured 

that Reissner’s membrane would be included in the augmented image, because Reissner’s 

membrane was already located near the center of the pre-augmented image. 

 

Fig. 2. Process of data augmentation. The original image (left) is rotated by an angle between 

20 and 20 degrees, shrunk by a factor between 1 and 1.33, and cropped to a 64x64 pixel 

region around a randomly chosen center. 

The final number of augmented image patches in the training and validation data subsets 

are shown in Table 1 (numbers in parentheses). Specifically, 60 augmented images were 

generated per training control image and 76 augmented images were generated per training 

endolymphatic hydrops image; this produced an approximately equal number of augmented 

images of control and hydrops cochlea for training. In the validation subset, 10 augmented 

images were generated per validation image. 

2.3 ELHnet architecture 

The proposed ELHnet architecture is shown in Fig. 3 and detailed in Table 2. The architecture 

is based on the VGG16 architecture [35], which contains 16 layers (13 convolution layers and 

3 fully-connected (“dense”) layers). The ELHnet architecture contains 8 layers, including 6 

convolution layers and 2 fully-connected layers. The input to the ELHnet architecture is a 

two-dimensional 64 x 64 pixel image. We chose this input image size because its dimensions 

are powers of two, allowing the input image to be processed by multiple pooling layers, 

which reduce the height and width by half each time as shown in Fig. 3(a). The output is the 

predicted probability that the input image belongs to the endolymphatic hydrops class. The 

number of layers in ELHnet balances the classification power of a deep architecture (as 
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demonstrated by VGG16, the runner-up in ILSVRC 2014) and the reduced overfitting from a 

shallower architecture on our small data set. 

 

Fig. 3. ELHnet architecture. (a) The layers of ELHnet are illustrated schematically. Schematic 

design adapted from reference [36]. (b) The first five activations of the output of each layer are 

visualized, given the example image on the left as the input, resulting in a prediction of no 

endolymphatic hydrops (green number) from the final (fully connected) output layer (fc8). The 

final output layer (fc8) outputs a score between 0 and 1, which can be interpreted as the 

model’s predicted probability that the input image shows endolymphatic hydrops. The 

penultimate layer (fc7) tends to output values of either 1 or 1 because of the hyperbolic 

tangent activation function used for that layer (Table 2), which compresses positive and 

negative values of large magnitude to 1 and 1, respectively. 
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Table 2. ELHnet architecture. 

Layer Type Input Kernel Filters Stride Pad Activation Output 

data Input 1x64x64 N/A N/A N/A N/A N/A 1x64x64 

conv1 Convolution 1x64x64 3x3 32 1 1 ReLU 32x64x64 

conv2 Convolution 32x64x64 3x3 32 1 1 ReLU 32x64x64 

pool2 Max pooling 32x64x64 2x2 – 2 0 – 32x32x32 

conv3a Convolution 32x32x32 3x3 32 1 1 ReLU 32x32x32 

conv4 Convolution 32x32x32 3x3 64 1 1 ReLU 64x32x32 

conv5 Convolution 64x32x32 3x3 64 1 1 ReLU 64x32x32 

pool5 Max pooling 64x32x32 2x2 – 2 0 – 64x16x16 

conv6a Convolution 64x16x16 3x3 32 1 1 ReLU 32x16x16 

fc7b Fully 

connected 

32x16x16 16x16 512 1 0 tanh 512x1 

fc8c Fully 

connected 

512x1 1x1 1 1 0 sigmoid 1x1 

aTrained using dropout rate of 25% 

bTrained using dropout rate of 50% 

cTrained using L2-regularization 

Convolution layers convolve the output from the previous layer with a set of learnable filters and then applies an 

element-wise non-linear activation function. The activation functions used were rectified linear unit, ReLU(x) = 

max(0, x); hyperbolic tangent, tan h( )

x x

x x

e e
x

e e









; and sigmoid function,  

1

1
x

S x

e






. Pooling layers 

downsample the output of the previous layer along the spatial dimensions by taking the maximum value in each 

2x2 region. Fully-connected layers are regular (non-convolutional) dense neural network layers, which aggregate 

all of the information from the different spatial positions into one final prediction at the end of the network. All 

weights include a bias term. Weight initialization used the standard Gaussian distribution, which was found to 

perform better than Glorot normal initialization. Batch normalization was not used. Dropout and L2-

regularization were used in the layers indicated for training the model weights. 

2.4 Training 

The network was trained with the binary cross-entropy loss function. The cross-entropy loss 

function was motivated by the fact that ELHnet uses a sigmoid activation function in the final 

output layer, producing an output between 0 and 1 (fc8 in Table 2). For N  images in a batch, 

the complete loss function L , as a function of the CNN parameters W , of the ELHnet model 

is defined as: 

      ( ) ( ) ( ) ( )

1

1
( ) ˆ ˆ  log 1 log 1

N
i i i i

i

L W y yy y
N 


    
   (1) 

where  1,  , i N   is the image index,  ( ) 0,1iy   is the ground truth label of endolymphatic 

hydrops in image i , and  ( ) ( ) ; (0,1ˆ )i iy f x W   is the output of the CNN given input ( )ix  

(where ( )ix  is image i ) and weights (parameters) W . ( )ˆ iy  can be interpreted as the model’s 

predicted probability that input i  belongs to class 1 (i.e. demonstrates endolymphatic 

hydrops). 

Weights of layers were initialized using a standard normal distribution. The network was 

trained for 50 epochs in batches of 32 images, with early stopping after four epochs without 

improvement in the loss function. The learning rate was initialized to different values, listed 

in Table 3, and updated with Adam, a popular stochastic gradient-based optimizer with 

adaptive learning rates, using all other update parameters following the original paper [37]. 

Optimal learning rates were determined by trial and error, and are bolded in Table 3. The 
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training process was carried out using the Theano framework [38] and Keras library [39] in 

Python 2.7. The networks were trained using an NVIDIA GRID (GK104 “Kepler”) 4GB 

GPU graphics card on Amazon Web Services Elastic Compute Cloud. The training process 

took ~11 seconds for an iteration of ~1652 images. 

Table 3. Learning rates that were explored during training. 

 Learning rate Accuracy Sensitivity Specificity 

ELHnet 7.7 x 104 0.9860 0.975 0.9945 

 7.8 x 104 0.9906 0.990 0.9910 

 7.9 x 104 0.9864 0.987 0.986 

 8.0 x 104 0.9768 0.985 0.988 

 8.1 x 104 0.9753 0.970 0.980 

 9.0 x 104 0.9807 0.975 0.985 

VGG-pretrained 7.9 x 104 0.922 0.8855 0.951324 

 8.0 x 104 0.9229 0.946 0.904984 

 8.1 x 104 0.923 0.936 0.913162 

 8.2 x 104 0.924 0.9115 0.933022 

 8.3 x 104 0.9175 0.948 0.893692 

VGG-finetuned 1 x 10-5 0.958187 0.9585 0.957944 

 1 x 10-4 0.963004 0.966 0.96067 

 1 x 10-3 0.562172 0 1 

Accuracy, sensitivity, and specificity are given for validation performance. The best 

learning rate, in bold, was used for final training of ELHnet before evaluation on the 

test data set. ELHnet was trained without using transfer learning. VGG-pretrained used 

the output of the last convolutional layer of VGGnet as bottleneck features and trained a 

fully-connected network on top, consisting of three densely connected layers, using the 

extracted bottleneck features. VGG-finetuned used the VGGnet model weights as 

initializations to fine-tune the last convolutional block (three convolutional layers) and 

fully-connected layers (two densely connected layers) using our domain-specific 

training data set. 

To reduce overfitting of the model to training data, we evaluated the trained model on 

validation data after each epoch, and saved the model weights that maximized validation 

accuracy over all the model weights that were explored during training. We employed 

dropout [40] in the third and sixth convolutional layers and first fully connected layer (Table 

2) to reducing overfitting during training, as well as L2-regularization of matrix weights in 

the last fully connected layer (Table 2). 

2.5 Evaluation 

After training and validation, we evaluated ELHnet on test data and reported the test 

performance without further modification to the model weights and parameters. To evaluate 

test data, we wrote code in Python 3.5 that applied the trained ELHnet model to classify new 

images using a portable and efficient algorithm for matrix multiplication. We wrote code in 

Python 3.5 so that we would be able to integrate it into our existing OCT software, written in 

Python 3.5. The computation time for evaluating one image using the trained ELHnet 

classifier took about 50 to 80 msec. 

During evaluation, the user manually selected the center of the region of interest (ROI) in 

the original image for classification (Fig. 4). The image was then cropped to a 64 x 64 pixel 

ROI centered on the selected point, and the ROI was input to ELHnet for classification. If the 

selected center was less than 32 pixels from the image edge, then the image was zero-padded 

along the image edge to allow cropping of the ROI beyond the image border. ELHnet outputs 
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the classification score, ( )ˆ iy  in Eq. (1), which is between 0 and 1. This is the same output as 

from the final fully-connected layer, fc8, of ELHnet described in Table 2 and Fig. 3. Scores 

can be interpreted as the model’s predicted probability that the input image belongs to the 

endolymphatic hydrops class. The final classification is determined to be endolymphatic 

hydrops if the score is greater than 0.5 and non-hydrops otherwise. 

 

Fig. 4. Steps for classifying images using ELHnet. The uncropped, original image is shown, 

and a region of interest (ROI) is selected by the user applying ELHnet. The user manually 

clicks on the center of the desired ROI, whose size is 64x64 pixels. Next, the ROI is input to 

the ELHnet model for classification. The classification result is shown as a red or green box 

around the ROI. Green box indicates the predicted class is non-hydrops, and red box indicates 

the predicted class is endolymphatic hydrops. In this example, the red color of the box 

indicates a classification of endolymphatic hydrops. 

As part of our assessment of ELHnet, we also classified endolymphatic hydrops in test 

images using an existing computer-aided detection (CAD) approach [29]. The CAD approach 

applies image processing techniques to measure the perpendicular displacement of Reissner’s 

membrane, i.e. the distance of the midpoint of Reissner’s membrane from its normal position 

on a straight line between the spiral limbus and spiral ligament. Images with displacement 

measurements above a previously established cut-off value of 7.36 um [29] were classified as 

endolymphatic hydrops. 

2.6 Visualization 

To visualize areas of the input image important for ELHnet classification, we generated 

rectified saliency maps [41] using an existing Keras visualization package [42]. These maps 

show the degree to which small changes in individual image pixels influence the prediction of 

the network (the output from the final fully-connected layer, fc8). We displayed the saliency 

maps in pseudocolor overlaid over the original images in grayscale. 

3. Results 

3.1 Endolymphatic hydrops classification 

We evaluated ELHnet on the validation data set during training and on the test data set after 

training was completed. The learning curves for the loss function and training and validation 

accuracies are shown in Fig. 5. Evaluating the final model on the validation set correctly 

classified all but seven of the augmented validation images (3823/3830 augmented images 

from four mice). The seven errors were images of endolymphatic hydrops that were 

misclassified as non-hydrops. These false negatives are shown in Fig. 6, along with a sample 

of ten true positives and ten true negatives for comparison. For testing, ELHnet correctly 

classified all 19 non-endolymphatic hydrops images and 15 out of 18 endolymphatic hydrops 

images (34/37 images from 37 mice). All test images are shown in Fig. 7. Table 4 

summarizes the validation and test results. Overall, ELHnet demonstrated 100% specificity in 

validation and test performance, and 99.4% sensitivity in validation performance and 83.3% 
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sensitivity in test performance. These results suggest that the training/validation process 

developed ELHnet to prioritize specificity over sensitivity. Receiver operating characteristic 

(ROC) analysis of ELHnet demonstrated an area under curve (AUC) of 1.000 for validation 

data and 0.965 for test data (Fig. 8), suggesting that ELHnet allows sensitive and specific 

classification of endolymphatic hydrops at multiple decision cutoffs of output classification 

scores (i.e. besides the cutoff we used of 0.5). 

 

Fig. 5. Learning curves for the loss function and training and validation accuracies during 

training of ELHnet. 

 

Fig. 6. Validation results for ELHnet classification of the validation data set. Classification was 

performed using augmented images from the validation data set, i.e. zoomed, rotated, and 

cropped patches of 64x64 pixels from the original images of 128x128 pixels. All validation 

images were correctly classified except for seven augmented images of endolymphatic 

hydrops, which were misclassified as false negatives, as shown. A representative sample of ten 

true negative and ten true positive augmented images are also shown. Note: a classification 

result of endolymphatic hydrops was considered “positive” and a classification result of non-

hydrops was considered “negative”. Therefore, “true negative” indicates a classification of 

non-hydrops in a control mouse, “false negative” indicates a classification of non-hydrops in a 

mouse with endolymphatic hydrops, etc. 
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Fig. 7. Test results for ELHnet classification of the test data set. The test data set comprised of 

previously unseen OCT images, each taken in a new cochlea. Cochleae with ground truth 

labels of non-endolymphatic hydrops are labeled as control; cochleae with ground truth labels 

of endolymphatic hydrops are labeled as such. ELHnet correctly classified all 19 control 

images and 15 of the 18 endolymphatic hydrops images. For clarity, only the region of interest 

that was used for classification by ELHnet is shown. Note: a classification result of 

endolymphatic hydrops was considered “positive” and a classification result of non-hydrops 

was considered “negative”. Therefore, “true negative” indicates a classification of non-hydrops 

in a control mouse, “false negative” indicates a classification of non-hydrops in a mouse with 

endolymphatic hydrops, etc. 

Table 4. Validation and test performance of ELHnet. 

 Validation (64x64 patches)  Test 

Model Accuracy Sensitivity Specificity  Accuracy Sensitivity Specificity 

ELHnet 0.998 0.994 1  0.919 0.833 1 

 (3823/3830) (1223/1230) (2600/2600)  (34/37) (15/18) (19/19) 

Validation images (128 x 128 pixels) were augmented to create 10 patches per image, and the augmented 

patches (64 x 64 pixels) were used for validation. All 2600 validation patches corresponding to the control 

group were correctly classified, and all but 7 of the 1230 validation patches corresponding to endolymphatic 

hydrops were correctly classified. When the scores of the 10 patches for each image were averaged to obtain a 

final prediction for the image, all 123 validation images corresponding to endolymphatic hydrops were 

correctly classified. For test images, the user manually selected the region of interest (64 x 64 pixels) in the 

original image for classification. 
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Fig. 8. Receiver operating characteric curves for ELHnet based on its classification scores for 

(a) the validation data set and (b) the test data set. 

3.2 Performance of ELHnet versus models trained using transfer learning from 
VGGnet 

The validation performances of models trained using the ELHnet architecture were compared 

with the validation performances of models trained using transfer learning from the pre-

existing network VGGnet [35]. Transfer learning has been shown to be an effective method to 

train deep networks using small data sets common to medical research [43]. We compared 

ELHnet models with VGG-pretrained and VGG-finetuned models (Table 3). ELHnet was 

trained (without transfer learning) on our set of medical images with randomly initialized 

weights. VGG-pretrained uses the pre-existing VGGnet as a fixed convolutional feature 

extractor and, given the convolutional features as input, only trains the fully connected layers 

with randomly initialized weights on our set of medical images. VGG-finetuned uses the 

VGGnet weights as initialization but then has the last block of convolutional layers and the 

fully-connected layers fine-tuned. Fine-tuned means that the weights were initialized with the 

pre-existing VGGnet weights and then trained on our set of medical images. Overall, ELHnet 

demonstrated higher sensitivity and specificity in validation performance than VGG-

pretrained and VGG-finetuned. 

3.3 Performance of ELHnet versus an existing computer-aided detection approach 

To further assess ELHnet, we compared its classification performance on the test data set 

with that of an existing computer-aided detection (CAD) approach [29]. Similar to ELHnet 

(and unlike VGGnet), the CAD approach was specifically designed to classify endolymphatic 

hydrops in cochlear OCT images, thus providing a relevant baseline for comparison. The 

CAD approach correctly classified 10 of 16 analyzed control images and 14 of 15 analyzed 

hydrops images, and was unable to analyze 3 control images and 3 hydrops images (Fig. 9). 

Notably, five of the six false positive images were misclassified due to errors in segmentation 

of Reissner’s membrane that resulted in erroneously large measurements of perpendicular 

displacement. Compared with ELHnet, the CAD approach showed about the same sensitivity 

(93.3% vs 91.9%) but a substantially lower specificity (62.5% vs 83.3%). Moreover, ELHnet 

is better than the existing CAD approach because it has the ability to analyze all input images 

instead of only a fraction of them (50-87% in previous work [29]). 

We used the previously established cut-off value of 7.36 μm to classify endolymphatic 

hydrops using CAD measurements of perpendicular displacement [29]. To assess sensitivity 

and specificity at other cut-off values, we also performed ROC analysis and found the AUC 

to be 0.775 for the CAD approach (Fig. 10). This was less than the AUC of 0.965 for ELHnet 

(Fig. 8). 
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Fig. 9. Test results for the computer-aided detection (CAD) approach [29] classification of the 

test data set. This is the same test data set used to evaluate the test performance of ELHnet. 

The CAD approach correctly classified 10 of the 16 analyzed control images and 14 of the 15 

analyzed endolymphatic hydrops images. The CAD approach was unable to analyze (and 

therefore classify) 3 control images and 3 hydrops images. 

 

Fig. 10. Receiver operating characteric curve for the computer-aided detection approach [29] 

to classifying endolymphatic hydrops in the test data set. 

3.4 Visualization of ELHnet using saliency maps 

To visualize areas of the image ELHnet is dependent on for classification, we generated 

saliency maps [41] for correctly classified, pre-augmented 64x64 training images (Fig. 11(a)). 

We observed salient pixels along Reissner’s membrane, as well as along the tectorial 

membrane and otic capsule near Reissner’s membrane’s attachment to the spiral ligament. In 

the three test images that ELHnet misclassified as false negatives, the salient pixels were 

localized to the proximal upper portion of Reissner’s membrane and approximated a short 

straight line (Fig. 11(b)). Overall, these visualizations suggest that Reissner’s membrane is an 

important learned feature for ELHnet classification. 

                                                                              Vol. 8, No. 10 | 1 Oct 2017 | BIOMEDICAL OPTICS EXPRESS 4592 



 

Fig. 11. Saliency maps for (a) control and endolymphatic hydrops training images correctly 

classified by ELHnet, and (b) the three test images of endolymphatic hydrops misclassified by 

ELHnet. Saliency maps are overlaid in pseudocolor over the original images in grayscale. 

4. Discussion 

In this paper, we address the problem of endolymphatic hydrops classification in cochlear 

OCT imaging using a convolutional neural network (CNN) architecture called ELHnet. We 

demonstrate using experimental data that this approach can automatically analyze all input 

images and classify them with high specificity and moderate-to-high sensitivity. The 

procedure for ELHnet classification is automated after the user clicks on the scala media in 

the OCT image. 

To train and evaluate ELHnet, we developed a data set containing 2196 OCT images of 

cochleae from 54 mice. This is a larger number of mice used compared with previous work in 

automated endolymphatic hydrops classification [29]. This is also the first demonstration of a 

convolutional neural network approach to endolymphatic hydrops classification. 

During training, we observed significant improvements in the learning curves after one 

epoch (Fig. 5). This may be influenced by data augmentation, which increased the number of 

training images per epoch by over 60 fold (Table 1). Learning curves plotted per batch of 32 

images, instead of per epoch, could allow improved visualization of the learning process 

during the first epoch. We note that the validation accuracy is initially greater than the 

training accuracy after the first epoch, which might be because the validation images were 

easier to classify than the training images due to small sample variation. 

We sought to identify image features that could explain the misclassification of false 

negative images by ELHnet. The saliency maps suggest that Reissner’s membrane is an 

important learned feature (Fig. 11), but it is not clear what would lead ELHnet to misinterpret 

this learned feature in the images that were misclassified. Based on a qualitative assessment, 

false negative images in the validation data set tended to have a higher-zoom level and a 

broader arc of curvature to Reissner’s membrane compared with true positive images (Figs. 6 

and 7). Frankly, it is also difficult for a human observer to distinguish whether some of these 

borderline images have increased or normal endolymph volume. 

It is possible that misclassification owes in part to overfitting, i.e. classification of images 

using non-intuitive image features emerging from sample noise rather than true underlying 

patterns in the training data. The risk of overfitting is increased when the training sample size 

is small [40]. Lack of generalizability also appears to be an issue, given the higher sensitivity 

of ELHnet classification observed for validation data (99.4% sensitivity) compared with for 

test data (83.3% sensitivity). This may be in part due to the fact that training and validation 

data were generated using image augmentation whereas test data was not. Systematic 

differences in the experiments used to acquire the validation and test images (e.g. resulting in 
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systematic variation in endolymphatic hydrops severity, image clarity, speckle noise, 

resolution) could also contribute to the validation and test performance discrepancy. 

This study has some limitations. It should be noted that the OCT images come from one 

imaging setup and research team. This may limit variation in images that could owe to 

differences in animal preparation or imaging setup (e.g. laser power, positioning and angling 

of the mouse cochlea). Training a CNN on such a data set with limited variation may result in 

overfitting and reduced generalizability to other data sets. To overcome this challenge, images 

from other research teams and other OCT systems should be incorporated in future data sets. 

A second limitation is that this network was trained and tested using only the left mouse 

cochlea. We imposed this constraint to reduce training time and data storage. A 

straightforward solution to classifying images of right cochleae is to re-train ELHnet using 

the horizontally-flipped and non-flipped image of each augmented image. Finally, the 

performance of ELHnet should be evaluated on a larger number of test images to confirm the 

network’s performance characteristics. The small size of the test data set (37 images total) 

owes in part to our requirement that each test image represent an entirely new cochlea. The 

relative lack of available OCT images of endolymphatic hydrops has made acquiring a large 

data set challenging. Hopefully, as more OCT imaging experiments are performed in the 

cochlea, it will be possible to train and test CNN models with larger amounts of data to 

improve upon the performance demonstrated by ELHnet. 

We have shown the applicability of ELHnet for endolymphatic hydrops classification. 

This application may be important for research in endolymphatic hydrops and its relationship 

to hearing loss, especially as OCT imaging of the cochlea becomes more widely used. 

If/when OCT imaging is developed for the human cochlea, ELHnet could also aid the 

detection of endolymphatic hydrops in patients. However, OCT imaging of the human 

cochlea remains a challenge because of the greater thickness of the cochlear bone. Several 

unanswered questions remain for automated classification of endolymphatic hydrops, such as 

how ELHnet and other automated methods compare with single-observer classification of 

pre-labeled images (by expert reviewers). In future work, we aim to compare ELHnet with 

other existing methods for classifying endolymphatic hydrops so that researchers will have a 

better understanding of which method may best suit their needs. 

5. Conclusion 

We provide, to our knowledge, the first deep learning approach to classifying endolymphatic 

hydrops using cross-sectional OCT images of cochleae. Classification by ELHnet, our trained 

convolutional neural network, yielded test performance of 83.3% sensitivity (15/18 images) 

and 100% specificity (19/19 images). These findings support the role of convolutional neural 

networks in classifying endolymphatic hydrops for research and future clinical applications. 
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